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Climate change alters the future of natural
floristic regions of deep evolutionary origins

Samuel Minev-Benzecry & Barnabas H. Daru

Biogeographic regions reflect the organization of biotas over long evolu-
tionary timescales but face alterations from recent anthropogenic climate
change. Here, we model species distributions for 189,269 vascular plant spe-
cies of the world under present and future climates and use this data to gen-
erate biogeographic regions based on phylogenetic dissimilarity. Our analysis
reveals declines in phylogenetic beta diversity for years 2040 to 2100, leading
to a future homogenization of biogeographic regions. While some biogeo-
graphic boundaries will persist, climate change will alter boundaries separat-
ing biogeographic realms. Such boundary alterations will be determined by
altitude variation, heterogeneity of temperature seasonality, and past climate
velocity. Our findings suggest that human activities may now surpass the
geological forces that shaped floristic regions overmillions of years, calling for
the mitigation of climate impacts to meet international biodiversity targets.

Biogeographic regionalization is the grouping of regions based on their
shared elements such as taxonomic composition1,2 or vegetation
features3. This classification forms the basis of many biogeographic,
conservation, and macroecological investigations4,5. Incorporating phy-
logenetic information into regionalization analysis, i.e., phylogenetic
regionalization, can reveal new insights into the ecological processes
that structure biodiversity over geologic time scales, such as vicariance,
dispersal, speciation, extinction, and niche conservatism6–8. Within a
biogeographic region, change in species composition (β-diversity) is
expected to be relatively similar because of shared diversification and
colonization history6,9 but separated from neighboring regions by bio-
geographical boundaries10,11. The boundaries are shallow if they separate
species assemblages with limited dissimilarity (floristic regions hence-
forth) and deep if they separate highly dissimilar species assemblages
(realms henceforth)12. Concomitantly, the pronounced impact of
human-induced global change on biodiversity13–15 poses a threat to bio-
geographic regions which have their origins in deep evolutionary
time7,16. The effects may be severe when they affect primary producers
like vascular plants, because the extirpation or change in plant species
assemblages can simplify and disrupt ecosystem functioning17,18.

Studies investigating changes in biogeographic regions have
focused on the role of invasive species introductions and local extir-
pations of animal taxa and have revealed that alien species alter bio-
geographic regions19–21. By contrast, a recent study22 suggested that

extinctions exert a greater homogenizing effect on plant biogeo-
graphic regions than introductions. However, this conclusion was
drawn from the compilation of regional checklists and floras aggre-
gated to artificial and coarse administrative units such as countries or
provinces22. Although anthropogenic climate change has been identi-
fied asoneof the keydrivers of biodiversity change23,24, no studies have
investigated how future climate change would impact plant biogeo-
graphic regions. Climate change can influence plant species distribu-
tion by exceeding critical thermal limits, or indirectly by determining
the availability of key resources such as water and nutrients25. As a
result of such anthropogenic filtering, species may undergo range
shifts in various directions in response to changes in environmental
conditions to maintain equilibrium with suitable living conditions26,27.
These shifts can result in local extirpations or introductions in pre-
viously unoccupied areas, leading to changes in biotic composition (β-
diversity) across biogeographic regions, with negative consequences
for ecosystem services such as primary production28,29.

We hypothesize that if species’ climatically suitable habitats con-
tract under worsening climate conditions, β-diversity will likely
increase, leading to the compositional differentiation of biogeo-
graphic regions30 (Fig. 1). Conversely, in areas where species ranges
expand to colonize new climatically suitable areas, β-diversity will
decrease, and the composition of species assemblages will experience
homogenization across geographic space6. Climate change can also
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redefine biogeographic boundaries by rearranging species distribu-
tions without changes in their number20. Altogether, we predict that
climate change can homogenize, differentiate, and redefine biogeo-
graphic regions resulting in different biogeographic regions than we
see today (Fig. 1).

Here, we assess how anthropogenic climate change could
homogenize, differentiate, and redefine natural biogeographic regions
of vascular plants. We compare biogeographic regions delineatedwith
species distributions in the present with those delineated based on
modeled distributions under future climate scenarios. Specifically, we
used species distribution models to analyze 454 million occurrence
records for vascular plants fromherbaria and observations resulting in
individual species-level native range maps for 189,269 species under
present and future climatic projections throughout the twenty-first
century. The selection of the 189,269 species reflects those with suc-
cessfully modeled distributions that are consistent across different
time horizons and climate scenarios. Future projections are based on
the Model for Interdisciplinary Research on Climate v.6 (MIROC6)31

and four Shared Socioeconomic Pathways (SSP 126, 245, 370 and 585).
These pathways represent varying levels of climatemitigation, ranging
from best-case (SSP126) to moderate (SSP245 and SSP370) and high
emissions (SSP585) scenarios32,33. Specifically, we modeled current
plant distributions as a function of current environmental variables
and used thismodel to predict future plant distributions at new values
of climate under different future scenarios for T1: 2021-2040, T2: 2041-
2060, T3: 2061-2080, and T4: 2081-2100. For each time horizon, we
combined themodeled distributions with a species-level phylogeny of
plants and used pairwise phylogenetic β-diversity to generate bio-
geographic regions and address the following questions: (1) How
might climate change homogenize, differentiate, or redefine plant
biogeographic regions? (2) How would climate change alter plant
biogeographic boundaries? and (3)What are the determinants of plant
biogeographic boundaries in the age of human impact? We uncover
patterns of both differentiation and homogenization within existing
biogeographic regions that can lead to persistence of some biogeo-
graphic boundaries, while climate will alter deeper biogeographic
boundaries that separate historically distinctive plant assemblages.
This suggests that human activities may now be a dominant force
structuring plant biogeographic regions, potentially overriding the
influence of evolutionary history.

Results and discussion
Climate change and the alteration of biogeographical patterns
We used niche-based distribution models to delineate floristic regions
for plant species across four future timeperiods (T1–T4) usingMIROC6
(a climate model for representing various processes of the Earth’s cli-
mate system)31 and four Shared Socioeconomic Pathways (SSPs). Using
the minimum number of clusters explaining 85% (corresponding to
floristic realms) and 90% (regions) of Simpson’s phylogenetic dissim-
ilarity based on the unweighted pair group method with arithmetic
mean (Supplementary Fig. 1) as in previous studies4,7–9,12, we identified
19 distinct clusters of 100 km× 100 km grid cells which we define as
floristic regions nested within 10 highly distinctive clusters (floristic
realms) in the present-day (Fig. 2). The number of clusters for the
present-day floristic regions were consistent with future floristic
regions for some climate scenarios and different for others, ranging
from 21 regions in timeframe T1 (2021–2040) to 25 by 2100 (Supple-
mentary Fig. 2). We used these cutoffs to map plant biogeographic
regions for future distributions (Fig. 2). Our delineated plant biogeo-
graphic regions in the present-day show moderate spatial correlation
with future biogeographic regions, and slightly lower on average
compared to the correlation among future biogeographic regions for
most time periods (Supplementary Fig. 3). Future projections indicate
the Circumboreal, Afrotropics, Saharo-Arabian, Malesian, and Indian-
Indochinese regions are similar to present-day floristic regions (Fig. 2
and Supplementary Fig. 4) and consistent with established floristic
regions7,8. Differences in our projected floristic regions include the
merging of Amazonian and Brazilian floristic regions into a single unit
in future time periods (T3 and T4), along with the disappearance of
Californian floristic region during the same period (Supplementary
Fig. 4). These findings are projected to remain consistent across all SSP
climate scenarios (Supplementary Fig. 5). These findings suggest an
initial differentiation and redefinition of biogeographic regions in the
mid-century, followedby coalescenceof regions towards the endof the
century, supporting our hypothesis that climate change can both dif-
ferentiate and redefine some plant biogeographic regions.

To assess changes in the composition of biogeographic regions,
we measured shifts in phylogenetic beta diversity (“phylobeta diver-
sity”)—the standardmetric commonly used to delineate biogeographic
regions4,12—across future projections in grid cells relative to present-
day floristic regions. We found that future phylobeta diversity is

Fig. 1 | Hypotheses for how climate-induced biodiversity change can alter the
future of floristic regions. Clusters of present floristic regions in non-metric
multidimensional scaling (NMDS) space defined by clustering species occurrences
with phylogenetic information and applying pairwise Simpson’s β-diversity, βsim,
where a is the number of shared species between two grid cells, and b and c are the
numbers of species unique to each grid cell. As climate changes due to human

impacts, species may undergo range shifts in response to environmental factors
such as temperature to maintain equilibrium with suitable living conditions. Con-
sequently, and depending on the climate scenarios over the 21st century, we pre-
dict that climate change can homogenize, redefine or differentiate the future of
floristic regions.
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projected to be relatively lower when considering phylobeta diversity
within present-day biogeographic regions, with a global mean reduc-
tion in Cohen’s d effect size of -0.0058 in T1 to -0.06 in T4 (2081-2100)
(Fig. 3, Supplementary Table 1). Phylobeta diversity is predicted to
decrease the most in the Circumboreal, North American Atlantic,
Madagascan, Monsoonal Tropics-Eremean, and Neozylandic floristic
regions (P < 0.05, Cohen's d effect size; Fig. 3), and this will intensify
toward the end of the century in T4 (2081-2100). The projected decline
of phylobeta diversity within floristic regions supports our hypothesis
that climate change can homogenize plant biogeographic regions.

Our findings illustrating similarities and differences among
present-day and future regionalizations are consistent at the floristic
realm level and across different dissimilarity metrics of phylogenetic
beta diversity (Simpson’s and Sorensen indices; Supplementary
Fig. 6–8), highlighting the robustness of our findings. While previous
studies have demonstrated the influence of non-native introductions
and species extirpations in altering biogeographical patterns for

terrestrial vertebrates20, snails19, and fish21, our study is the first global
assessment of how climate change alone alters biogeographical pat-
terns, reinforcing recent findings that suggest a stronger role of cli-
mate change compared to land use change in impacting biodiversity34.

Shifts in biogeographical boundaries under climate change
We evaluated shifts in region and realm boundaries as the boundaries
between biogeographic regions, at a grain resolution of 100 km. We
found that all boundaries are distributed across all continents (Fig. 4)
consistent with the boundaries of previous global regionalizations of
plants7,8 and tetrapods12,35–37. Some present-day floristic boundaries
overlap with projected future floristic boundaries, particularly in the
Andean (T1-T4), Tibetan-Hengduan-Himalaya (T1-T4), and Rocky
Mountains (T1, T2, and T4) regions (Fig. 4), suggesting that the factors
currently separating distinct plant communities will likely continue to
act as barriers as the climate changes. However, in the Brazilian-Ama-
zonian, South African, Afrotropics (Horn of Africa) and Australasian
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Fig. 2 | Changes in vascular plant biogeographic regions under current and
future climate scenarios in geographic space and in non-metric multi-
dimensional scaling (NMDS) ordination space.Top, global floristic regions in the
present-day delineated by clustering modeled range maps for 189,269 vascular
plant species with phylogenetic information and applying pairwise Simpson’s β-
diversity between 100km × 100km grid cells. Bottom, future floristic regions.
Future species distributions were predicted by first modeling current plant spe-
cies distributions as a function of current environmental variables and then using
this model to predict future plant distributions at new values of climate under
different future scenarios and then using that to generate floristic regions for T1:
2021-2040 based on the mean of pairwise distance matrices of phylogenetic β-

diversity for the four shared socioeconomic pathways (SSP126, SSP245, SSP370,
and SSP585). See supplementary information for other timeperiods T2: 2041-2060,
T3: 2061-2080, and T4: 2081-2100. The colors in the map and NMDS plots are
identical and indicate levels of differentiation of the flora in different floristic
regions such that floristic regions with similar colors have similar clades and those
with different colors differ in the plant clades they enclose. Black lines separate
floristic realms, while white lines separate floristic regions. The numbers in themap
and NMDS plots are arbitrary andmeant for visual reference to identify clusters for
each timeperiod anddonot represent a one-to-onematchacross timeperiods. The
maps are in the equal-area World Mollweide projection. Source data are provided
as a Source Data file.
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floristic regions, future boundaries will increasingly diverge from
present boundaries by the end of the century, representing mis-
matches between present and future boundaries (Fig. 4A–D).

These differences are further reflected in the spatial correlationof
present-day and future boundaries (Supplementary Fig. 9) where
present-day region boundaries show a weaker correlation with pro-
jected future region boundaries combined across climate scenarios
(Pearson’s r =0.79 to 0.80, P≪ 10−10) compared to the correlation
among individual scenarios of future regionboundaries for periodsT2-
T4 (r =0.86 to 0.89, P≪ 10−10, Supplementary Fig. 9, Supplementary
Table 2). For floristic realms, our projected realm boundaries showed
pronounced incongruence to boundaries of present-day floristic
realms compared to those observed for all region boundaries. Present-
day realm boundaries are weakly correlated with future realm
boundaries (Pearson’s r = 0.54 to 0.63, P≪ 10–10) compared to the
correlation among future realm boundaries (Pearson’s r =0.66–0.82,
Supplementary Fig. 9 and Supplementary Table 3). Several of these
projected realm boundaries that do not overlap present-day

boundaries include Southern Africa, Australasia, and Central United
States (Fig. 4). These findings suggest that climate change is likely to
alter deep floristic boundaries as opposed to shallow boundaries,
although in our context, deep boundaries correspond to the separa-
tion of highly dissimilar species assemblages, and not necessarily deep
evolutionary times. The tendency for the alteration of deeper floristic
boundaries under climate change might reflect the pattern of histor-
ical extinctions in these realms, with surviving species representing
remnants of once much more diverse clades38. It could also mean that
floristic realmsmay be getting less suited to rapid climate shifts in the
age of human impact, heightening the risk of boundary alterations.

Determinants of biogeographical boundaries
We tested whether the positions of present and future plant biogeo-
graphic boundaries are driven by areas that have experienced past
climate change, tectonic movements, temperature seasonality, pre-
cipitation seasonality, or variations in orographic barriers as these
metrics are hypothesized to influence biogeographic boundaries in
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Fig. 3 | Changes in phylogenetic beta diversity under climate change relative to
present-day floristic regions. The magnitude of change in Simpson’s β-diversity
across spatial and temporal scales was assessed by comparing the grid-cell com-
positional dissimilarity for delineating present vs future floristic regions when
considering Simpson’s β-diversity within present-day floristic regions. A two-sided
t-test was used to assess differences, followed by Cohen’s d with 1000 bootstrap

replicates to estimate effect size. Data are presented as Cohen’s d ranging from 0
(no effect) to +1 or −1 (large effect), with positive values indicating differentiation,
whereas negative values indicate homogenization. The error bars indicate 95%
confidence intervals, and the statistical significance of the t-test are indicated with
asterisks (P <0.01). Source data are provided as a Source Data file.

Fig. 4 | Changes in the boundaries of present-dayfloristic regions and realms in
comparison with future boundaries. Top row: all region boundaries for present-
day and futurefloristic regions indicating areas of congruence and incongruenceof
boundaries across climate scenarios for (A) T1: 2021-2040. B T2: 2041-2060. C T3:
2061-2080. D T4: 2081-2100. Bottom row: realm boundaries for present-day and

future floristic realms indicating areas of congruence and incongruence of
boundaries across climate scenarios for (E) T1: 2021-2040. F T2: 2041-2060. G T3:
2061-2080. H T4: 2081-2100. The maps are in the equal-area World Mollweide
projection. Source data are provided as a Source Data file.
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other taxonomic groups such as tetrapods35–37. Hierarchical general-
ized linearmodels39 show thatwhile present-day regionboundaries are
driven by areas that have experienced past climate change, and var-
iations in temperature seasonality and altitude (Fig. 5), future region
boundaries will be associated with areas that underwent rapid climate
change during the Quaternary (T1 and T3) and variations in tempera-
ture seasonality in T1 and T4 (Fig. 5). These findings suggest that past
climate changes have left lasting legacies that can shape the future
redistribution of plant biogeographic region boundaries under
anthropogenic change40–42. For deeper boundaries (i.e., those separ-
ating floristic realms), while temperature seasonality, precipitation
seasonality, altitude variation, tectonic separation, and past climate
velocity during the Quaternary are important in determining the
positions of present-day realm boundaries, only temperature season-
ality, altitude variation, and past climate velocity, will remain con-
sistent in shaping future realm boundaries (Fig. 5). Variations in
altitude create diverse climatic gradients, impacting temperature,
precipitation, and light availability. Species with specific ecological
adaptations may find these gradients crucial for survival whereas
others may struggle to find suitable habitat especially those at lower
elevations. Likewise, variations in temperature seasonality, particularly
in mountainous regions, could disrupt phenological cycles (e.g.,
flowering, or leafing times), pushing species beyond their physiologi-
cal tolerances. Thus, the physical barrier of mountains and the varia-
tion in temperature with altitude will likely continue to be a major
factor shaping plant distributions in the coming decades. These find-
ings also suggest that while past movements of tectonic plates, which
led to mountain building in some regions, isolation of biotas, or the
connectivity of others, have played a role in shaping the biogeographic
boundaries we see today, climate change may redistribute the future
of plant biogeographic boundaries43.

Our analysis of global patterns of plant biogeographic regions
indicates that future climate change can alter the natural floristic

regions as we know them today, consistent with growing evidence of
intensifying biodiversity change14,15,22,34. Three general patterns
emerge: (i) some floristic regions will remain unchanged while others
will see splits and losses due to changes in β-diversity, (ii) deeper
boundaries separating floristic realms will suffer more shifts than
shallowboundaries, and (iii) boundary shifts are projected to be driven
by altitude variation, heterogeneity of temperature seasonality, and
past climate velocity.

The biogeography of plants has always been shaped by a complex
interaction of biotic and abiotic factors throughout Earth’s geological
history9,16. For example, the Isthmus of Panama may have played a
crucial role in the dispersal of tropical and temperate taxa during the
Pliocene and Pleistocene ages44. The endemic radiation of the flora of
the Cape floristic region has been linked to the Benguela upwelling
system that brought cold and nutrient-rich waters to the surface along
the west coast of South Africa and Namibia during the late Miocene
about 10–8Ma45,46. Long-distance and intercontinental dispersal could
have been crucial for the formation of the Neotropical forests47.
Similarly, the Beringian land bridge likely played a role in the dispersal
of arctic biota during the Quaternary glaciations48. However, our
results indicate that as climate change intensifies toward the end of the
modern century, the future of these natural and distinctive floristic
regions of deep evolutionary origins may be compromised.

Earth’s climate has remained relatively stable since the last Ice
Age, about 11,500 years ago until ~1800, when global human popula-
tion first reached 1 billion with the onset of industrialization and
enormous expansion in the use of fossil fuels49,50. This was followed by
a series of abrupt changes that exceed the climate change of the Late
Holocene such as the appearance of manufactured materials in sedi-
ments, increased greenhouse gas emission, rising sea levels, and
unprecedented species invasions and native extirpations51. Our study
shows that human activities within a relatively short timemay surpass
the natural geological forces which generated plant biogeographical
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Fig. 5 | Determinants of plant biogeographic boundaries predicted by a hier-
archical generalized model. The model incorporates predictors hypothesized to
determine the positions of biogeographic boundaries including climatic hetero-
geneity (annual temperature, temperature seasonality, annual precipitation, and
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confidence intervals of z. Statistically significant predictors are marked with
asterisks (*), indicating a significance level of P <0.05. Source data are provided as a
Source Data file.
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regions over millions of years7,8,16, suggesting that the human enter-
prise is approaching criticality with significant consequences for Earth
system functioning52. Our findings reveal that the future of plant
communities can be highly dynamic, adding to the need to mitigate
climate impacts if the targets of COP 28 for 2030 and 2050 are to
be met53.

Methods
Distribution data and species distribution modeling
We explored shifts in plant biogeographic regions under climate
change using species distribution modeling under alternative climate
change scenarios. Ourmodelswere constructedbasedon the standard
protocol for reporting species distribution models using the ODMAP
(Overview, Data, Model, Assessment and Prediction) protocol54 (Sup-
plementary Note 1), along with open-source data and codes for sci-
entific reproducibility (see Data Availability). We used maximum
entropy (MaxEnt v.3.4.3)55 to model plant species distributions. Max-
Ent is not computationally expensive56 and has been shown to out-
perform other algorithms in modeling species distributions for
computational efficiency especially when dealing with a huge number
of species spanning hundreds of thousands of species as in this study
and is robust for modeling distributions for species with relatively few
occurrence records57. Predictor variables were downloaded from
WorldClim v.2.1 (ref. 58) at a spatial grain resolution of 5-arcmin
(equivalent to ~9 km at the equator) for present-day conditions (1970-
2000) and four future climate scenarios (T1: 2021-2040, T2: 2041-
2060, T3: 2061-2080, and T4: 2081-2100) based on MIROC6 and four
Shared Socioeconomic Pathways (SSP 126, 245, 370, and 585). These
pathways represent varying levels of climate mitigation, ranging from
strongmitigation (SSP126) tomoderate (SSP245 and SSP370) and high
emissions (SSP585) scenarios32,33. We considered 20 predictor vari-
ables (Supplementary Table 4) which are hypothesized to be impor-
tant for plant distributions and diversity in previous studies59,60. From
these predictor variables, we removed areas corresponding to inland
waters, i.e., lakes (using vector polygons fromhttps://naturalearthdata.
com). Variance Inflation Factor (VIF) was calculated among predictor
pairs to remove highly autocorrelated predictors using the R package
usdm version 2.1-6 (ref. 61).

Plant occurrence records were compiled from the Global Biodi-
versity Information Facility (GBIF, https://doi.org/10.15468/dl.jqqjba,
accessed 2 June 2024) using the query term “Tracheophyta”. This
yielded 454million records from 14,405 published datasets. However,
we previously showed that rawpoint occurrences of plants suffer from
inherent coverage gaps and sampling biases62 that can hinder their
ability to accurately represent global biodiversity patterns62,63. To this
end, we used a multi-step workflow to address these limitations as
follows: (i) Source data: the raw occurrence data used to produce the
species’ range polygons were obtained from GBIF. (ii) Data cleaning:
these records were thoroughly cleaned by matching species names
from the GBIF occurrences to those in the World Checklist of Vascular
Plants (WCVP) and keeping only verified names from WCVP64. At the
same time, the point records were refined to capture native distribu-
tions by intersecting them with WCVP’s native range maps of vascular
plants within country borders64 and retaining points that overlap
WCVP’s range maps. (iii) Polygon maps: After data cleaning, we con-
verted the point records into polygon maps by modeling with alpha
hulls using the R package rangeBuilder v.2.1 (ref. 65). We cropped each
species’ polygonmap to land areas using a basemap fromnaturalearth
(https://naturalearthdata.com). Finally, we systematically sampled
these polygon maps to generate 500 points per species for input into
the species distribution model (SDM) as in previous studies66–69 rather
than using the raw and biased point occurrences. (iv) Species-specific
dispersal rate: We incorporated a partial-dispersal model to prevent
erroneous predictions in suitable but unoccupied areas70,71. Specifi-
cally, we calculated species-specific dispersal rates using a spherical

Brownian motion model (SBM)72,73 implemented with the R package
castor v.1.7.10 (ref. 74). Unlike the widely used Brownian Motion
models of continuous trait evolution that encode geographic locations
in orthogonal space75,76, the SBM model quantifies the dispersal of a
clade over time as a diffusion-like process based on a single diffusion
coefficient D, while accounting for Earth’s spherical geometry73,74. The
SBMmodel was fitted using the function fit_sbm_const in the R package
castor v.1.7.10 (ref. 74). (v) Calibration area: the resulting dispersal rate,
defined as the expected dispersal distance traversed by a species in a
year (expressed in km/year), was used to define calibration areas (i.e.,
training areas) for modeling species distributions for each species
across different timeframes. This was achieved by buffering the dis-
persal rates around the alpha hull polygons of each species and
intersecting the buffered zoneswithmaps of the terrestrial ecoregions
of the world3 overlapped by the species to predict habitat suitability of
each species. This latter step was intended as an additional fine-tuning
process to allow us to capture the natural habitats of each species
based on their overlapwith the ecoregions. (vi) Background points: we
generated background points as a function of global plant sampling
intensity to account for the biased sampling in the input occurrence
records using spatial kernel density estimation and probabilistic
sampling of 10,000 background points for each species within their
calibration areas. (vii) Species distribution modeling: species dis-
tribution modeling was conducted to estimate species distributions
based on environmental conditions that correlate with known occur-
rences, and calibrated to species’ realized niche based on the calibra-
tion area defined using the species-specific dispersal rates. From the
occurrence data as input, we used a 75% random sample for model
development, while retaining the remaining 25% sample for model
evaluation. For each species, we built models using a combination of
hyperparameters in terms of the feature classes and regularization
multiplier settings in MaxEnt v.3.4.3 (ref. 54) as follows: linear,
threshold, and hinge responses, and tested a set of regularization
multiplier values (2, 5, 10, 15, 20) under a 5-folds cross-validation
framework77. Our models were predicted over each species’ occur-
rences as a function of present-day bioclimatic variables and using
these combinations of settings on a continuous scale between 0 and 1
using the sdm function in phyloregion v.1.0.9 (ref. 78). We generated
five sets ofmodels for each species and took themedian to account for
uncertainties across different model runs. While ensemble methods
that integrate and average predictions from multiple models are
valuable, this can be computationally expensive and impractical for
large datasets as in our study. With hundreds of thousands of species
spanning five time horizons and four climate scenarios, creating
ensembles for each would be computationally expensive and time-
consuming. Moreover, if the individual models within the ensemble
are highly similar, the ensemble may not provide much additional
benefit compared to a singlemodel. Therefore, we decided to run each
model five times and take themedian as amore efficient approach. For
future climate scenarios, we modeled plant distributions as a function
of present climate variables, and then used these models to predict
plant distributions at new values of climate under different future
scenarios for T1–T4 and SSP126, SSP245, SSP370, and SSP585. The
model prediction consisted of a rangemap stored in raster format at a
5-arcminute grid cell resolution. The suitability of themodels for each
specieswas converted to binary presences by using the 95%quantile of
the suitability values extracted from the underlying occurrence
records as presence threshold. The final dataset contains range maps
for 189,269 species, for thepresent, and four future timehorizons each
with four SSPs resulting in a total of 3,217,573 range maps for the
analysis of biogeographical regionalization under climate change.

Biogeographical regionalization
For each climate scenario, we overlaid each species modeled dis-
tributions onto equal area grid cells of 100 km × 100 km (Mollweide
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global projection system) to convert the predicted distribution data to
a community matrix of 189,269 species × 14,810 grid cells using the
polys2comm function in the R package phyloregion v.1.0.9 (ref. 78).
This resulted in a total of 17 different community matrices of
189,269 species × 14,810 grid cells (one for the present condition and
four for the four different future time horizons × four SSPs). We then
matched the community data to the most updated phylogenetic tree
of the world’s vascular plants79. The phylogenetic tree was generated
using the R package V.PhyloMaker2 v.0.1.0 (ref. 80) with function
phylo.maker based on the expanded megaphylogeny (GBOTB.exten-
ded.TPL) of ref. 79 as a backbone and the function build.nodes.1 in the
R package V.PhyloMaker2 v.0.1.0 (ref. 80). Missing taxa from the
megaphylogeny were added using V.PhyloMaker2 under scenario “S2”
that allows generation of random trees. We generated one tree and
used it to analyze compositional turnover (phylogenetic beta diver-
sity) based on Simpson beta diversity index (βsim)81. We used the βsim
here to measure beta diversity as in previous studies of biogeo-
graphical regionalization4,7,8,12,36,37 because it is insensitive to differ-
ences in species richness among sites82, and therefore provides
unbiased estimation of species composition among sites4. Simpson
beta diversity is expressed as:

βsim= 1� a
min b, cð Þ+a ð1Þ

wherea is the number of species shared between two sites, and b and c
are the numbers of species unique to each site. Values of βsim vary
from 0 (high similarity in species composition between sites) to 1 (no
shared taxa). We additionally tested the robustness of our results by
comparing our findings from βsim (Simpson’s index) with those
obtained from the Sorensen index, which is known to be more sensi-
tive to variations in species richness82. We found generally similar
results (Supplementary Fig. 6–8), suggesting the reliability of our
conclusions based on βsim. Matrices of beta diversity were calculated
using the function phylobeta in the R package phyloregion
v.1.0.9 (ref. 78).

Next, we contrasted the performance of eight different hier-
archical clustering algorithms (UPGMA, Single, Complete, ward.D,
ward.D2, WPGMA, WPGMC, and UPGMC) on each of the 17 βsim
matrices for degree of data distortion using ref. 83’s cophenetic cor-
relation coefficient using the select_linkage function in phyloregion
v.1.0.9 (ref. 78). For all the distance matrices of phylogenetic beta
diversity, the unweighted pair group method with arithmetic mean
(UPGMA) was identified as the best clustering algorithm (Supple-
mentary Fig. 1) and was used to cluster the distance matrices in
downstream analyses.

To determine the optimal number of clusters that best describes
the observed βsim matrices, we adapted ref. 12’s approach and selec-
ted two different thresholds to define floristic regions corresponding
to the minimum number of regions that explained 90% of between-
cluster βsim (sum of between-cluster βsim/total βsim) and 85% of
between-cluster βsim. We refer to the clusters explaining 90% of
phylogenetic dissimilarity as ‘regions’, while clusters explaining 85% of
dissimilarity correspond to the ‘realms’. The outputs were stored as
vector polygon for mapping and visualizations.

Climate change and plant biogeographic boundaries
We assessed the potential effects of climate change on biogeographic
boundaries as the boundaries between floristic regions for which at
least one adjacent cell belongs to a different floristic region35. This
delineation involved four steps. First, for each time horizon and cli-
mate scenario, we split the vector polygons based on floristic regions.
Second the vector polygonsof eachfloristic regionwere rasterized and
assigned a value of 1 using the rasterize function in the R package terra
v.1.7-55 (ref. 84). Third, buffers of 200 km were generated around the

cells using the function buffer in the R package terra v.1.7-55 (ref. 84).
Finally, the rasterized polygons were summed. Raster cells with a
cumulative value greater than one correspond to plant biogeographic
boundaries.

Spatial congruence across regionalizations
Wemeasured the degree of spatial association between present versus
future regionalizations using a quantitative measure known as
v-measure85. The v-measure evaluates spatial congruence using two
criteria: homogeneity and completeness. A spatial association satisfies
homogeneity criteria if all of the regions contain only cells which have
a single label. An association satisfies the completeness criteria if all
cells having the same label belong to a single region. To this end, we
projected each map in the Equal Earth projection system (+proj=e-
qearth code) and assessed congruence between the maps using the
V-measure statistic in the R package sabre v.0.4.3 (ref. 85). Spatial
association was computed using the function vmeasure_calc and set-
ting the option B > 1 so that completeness is weighted more than
homogeneity. V-measure scores range from 0 (incongruence) to 1
(indicating perfect similarity).

We additionally evaluated the similarities or differences of pre-
sent biogeographic boundaries versus future boundaries. This was
achieved by comparing the position of terrestrial boundaries across
the different regionalizations for both regions and realms. From the
spatial raster boundaries described above, we computed the geo-
graphic distance of each cell to the nearest boundary using the func-
tion distance in terra v.1.7-55 (ref. 84). We then conducted a spatially
corrected correlation between the position of the present biogeo-
graphic boundaries versus future boundaries. The correlations were
conducted using a corrected Pearson’s correlation for spatial auto-
correlation using the function modified.ttest in the R package Spa-
tialPack v.0.4 (ref. 86).

Determinants of biogeographical boundaries
We tested the potential of various biogeographical drivers, such as
orographic barriers, tectonic movements, and variations in climate
seasonality (temperature and precipitation), in explaining the position
of present and future plant biogeographic boundaries. Along these
lines, we considered biogeographical drivers hypothesized to affect
biogeographical boundaries in previous studies35–37 and grouped them
into four categories: climate heterogeneity, tectonic movements,
orographic barriers, and instability of past climate. (1) To assess cli-
mate heterogeneity, we obtained four bioclimatic variables known to
explain biogeographic patterns in previous global studies87 including:
mean annual temperature, temperature seasonality, mean annual
precipitation, and precipitation seasonality, from WorldClim v.2.1
(ref. 58). We acknowledge that our original input maps are modeled
estimations based on bioclimatic variables, and using variables solely
fromWorldClim could introduce some circularity. To address this, we
calculated climate heterogeneity for each grid cell as the coefficient of
variation between the focal cell and its eight neighbors. This approach
assumes that biogeographic boundaries often occur in areas with
sharp turnover in climate regimes. Grid cells with higher heterogeneity
values indicate they are different from neighboring ones. (2) Tectonic
movement was determined by reconstructing the geographic loca-
tions of present-day grid cell centroids in timesteps of 1Ma back to
their historical positions 65Ma. For each grid cell, we calculated the
historical distance between a grid cell and eight neighboring cells at
each timestep, and then computed the standard deviation of these
distances across the last 65millionyears, representing the variability of
geographical distances between grid cells across time. Our historical
distance reconstruction was based on SETON2012’s tectonic plate
model88 which reconstructs global plate motion for coastlines and
topological plate polygons since the break-up of the supercontinent
Pangea 200Ma. This was implemented using the function reconstruct
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in the R package rgplates v.0.4.0 (ref. 89), which is an interface for the
GPlates plate reconstruction software88. (3) To estimate orographic
barriers, we obtained elevation data fromWorldClim v.2.1 (ref. 58) and
calculated the mean absolute difference in elevation between a focal
grid cell and 8 neighboring cells. (4) We also included past climate
velocity during the Quaternary (reconstructed by ref. 90) at 5-arcmin
resolution by extracting values across grid cells. We standardized all
predictor variables to have a mean of 0 and variance of 1. All predictor
variables showed variance inflation factors less than 2 indicating
minimal collinearity.

Next, we used a simultaneous autoregressive spatial (SAR) model
with binomial error distribution to assess relationships of the position
of plant biogeographic boundaries and the predictors while account-
ing for spatial autocorrelation. This was achieved by building our
models with the response variable being a binomially distributed
binary variablewhichdetermineswhether a given cell is in contactwith
a biogeographic boundary or not. Along these lines, for each time
horizon and climate scenario, we split the vector polygons based on
floristic regions, rasterized the positions of boundaries between flor-
istic regions, and generated buffers of 200 km around the boundary
cells. The cells directly touching boundary lines were coded as “YES”
and the remaining buffered cells not touching the boundary lines were
coded “NO”. To ensure the best performance of our spatial regression,
we incorporated spatial autocorrelation in the error term using
neighborhood matrices. The neighborhood matrices were defined
based on the diameter of a circle extending fromone grid cell centroid
to another cell centroid, corresponding to 283 km, being the shortest
cell that kept all cells connected in the study area (functions dnear-
neigh andnb2listw in theRpackage spdep v.1.3-1, ref. 91).We thenused
the function hglm in the R package hglm v.2.2-1 (ref. 92) to fit hier-
archical generalized linear mixed models (HGLMs)93 with spatially
autocorrelated randomeffects with 200 bootstrap replicates. For each
variable, the effect size of the HGLM coefficients was converted to
Fisher’s z, which measures effect size independent of differences in
sample sizes94. Values of Fisher’s z were calculated using the t-values
from the output of the HGLM models using the tes function in the R
package compute.es v.0.2-5 (ref. 95). See ‘Data availability’ to access
the data and analysis codes96.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Plant occurrence records used for the modeling were downloaded
from the Global Biodiversity Information Facility (GBIF, https://doi.
org/10.15468/dl.jqqjba, accessed 2 June 2024) using the query term
“Tracheophyta”. From these records, we generated rangemaps using a
combination of biodiversity informatics and species distribution
modeling, and the resulting community matrices are archived on
Dryad at https://doi.org/10.5061/dryad.xd2547dqc. The phylogenetic
tree used for the analysis is a published phylogeny that is already
available in public repositories79. Specifically, the plant phylogeny was
downloaded from Smith & Brown79. Source data are provided with
this paper.

Code availability
All scripts and code necessary to repeat the analyses described here
have been made available in the new R package phyloregion78.
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